
Research Institute for Advanced Computer Science
NASA Ames Research Center

An O(log2N) Parallel Algorithm For

Computing the Eigenvalues of a

Symmetric Tridiagonal Matrix

Paul N. Swarztrauber

December 1989

Research Institute for Advanced Computer Science

NASA Ames Research Center

RIACS Technical Report 89.49

NASA Cooperative Agreement Number NCC 2-387

Ik

(NASA-CR-I88898) AN O(LOG SUP 2 N) PARALLEL

ALGORITHM FOR C_MPUTING Tile EIGENVALUES QF A

SYMMETRIC TRI_IAGONAL MATRIX (Research
Inst. for Advanced Comput,_r Science) 27 p

CSCL 09B
i I1[]

N92-I1659

Unclas

Ga/bl 0043100

An O(log2N) Parallel Algorithm For

Computing the Eigenvalues of a

Symmetric Tridiagonal Matrix

Paul N. Swarztrauber

December 1989

Research Institute for Advanced Computer Science

NASA Ames Research Center

RIACS Technical Report 89.49

NASA Cooperative Agreement Number NCC 2-387

An O(log2N) Parallel Algorithm For

Computing the Eigenvalues of a

Symmetric Tridiagonal Matrix

Paul N. Swarztrauber

Research Institute for Advanced Computer Science
NASA Ames Research Center - MS: 230-5

Moffett Field, CA 94035

RIACS Technical Report 89.49

December 1989

The Research Institute of Advanced Computer Science is operated by Universities Space Research

Association, The American City Building, Suite 311, Columbia, MD 244, (301)730-2656

Work reported herein was supported in part by Cooperative Agreements NCC 2-387 between the National
Aeronautics and Space Administration (NASA) and the Universities Space Research Association (USRA).

An O(log2N) parallel algorithm for computing the

eigenvalues of a symmetric tridiagonal matrix

by

Paul N. Swarz_rauber 1,2

December 1989

ABSTRACT

An O(loglN) parallel algorithm is presented for computing the eigenvalues of a

symmetric tridlagonal matrix using a parallel algorithm for computing the zeros

of the characteristic polynomial. The method is based on a quadratic recurrence

in which the characteristic polynomial is constructed on a binary tree from poly-

nomials whose degree doubles at each level. Intervals that contain exactly one

zero are determined by the zeros of polynomials at the previous level which

ensures that different processors compute different zeros. The exact behavior of

the polynomials at the interval endpoints is used to eliminate the usual problems

induced by finite precision arithmetic.

National Center for Atmospheric Research, Boulder, Colorado 80307, which is sponsored by
the National Science Foundation.

This work was supported by the NAS Systems Division via Cooperative Agreement NCC 2-

387 between NASA and the University Space Research Association _USRA}. This work was

performed while this author wa_ visiting the Research Institute for Advanced Computer Sci-

ence (RIACS), NASA Ames Research Center, Moffett Field, CA 94035.

-2-

1. Introduction. A parallel algorithm is presented for computing the eigen-

values of a symmetric tridiagonal matrix.

A

b
1 Cl

e 1 b 2 e 2

c 2

cN- 1

(1.1)

If e i = 0 the problem can be reduced to two independent eigenproblems and

hence it is customary to assume that c i # O. However, we do not make use of

this fact and the algorithm is valid for near multiple or multiple zeros. We begin

with a brief review of existing methods. In 1981, Cuppen developed a method

based on the splitting

[:01[0o]= + (1.2)
A Tz C r 0

where T 1 and T 2 are symmetric tridiagonal matrices and C has one nonzero ele-

ment clw 2 in its lower left hand corner. The elgenvalues of T 1 and T 2 can be

computed in parallel followed by an update procedure in which the eigenvalues

of A are computed from the eigenvalues of T 1 and T 2. This approach can be

-3-

applied reeursively by splitting T 1 and T 2 and so forth until matrices of order

one are obtained. The parallelism is now evident in the recursive process of com-

puting the eigenvalues, of successively larger matrices from those of smaller

matrices. This approach has been analyzed extensively by Dongarra and Soren-

son, 1987, who solved many of the practical problems that arise in itsimplemen-

tation and demonstrated that zero finding provides a viable technique for com-

puting eigenvalues. In particular they used deflation to improve reliabilityand

performance (Bunch, Nielson, and Sorenson, 1978).

Eigenvalues have also been computed as the zeros of the characteristic polyno-

mial of A. A variant of bisection, called multisectioning was recently developed

and analyzed (Lo, Philippe, and Sameh, 1987). Sturm sequences are developed

on multiple subintervals to isolate the elgenvalues. The eigenvalues are then

determined by bisection or Newton's method or the zero-in method that com-

bines bisection and the secant method. Multisectioning is particularly appropri-

ate if only a few eigenvalues and/or eigenvectors are of interest. Ipsen and

Jessup, 1989, have made a detailed comparison of Cuppens method, bisection and

multisectioning on the hypercube.

In this paper, the eigenvalues are also computed as the zeros of the characteristic

polynomial. The polynomial is evaluated on a binary tree structure using a qua-

dratic recurrence in which the degree of the polynomials doubles at each step

(Swarztrauber, 1979). Using N processors, the characteristic polynomial can be

evaluated in 0(logN) time. Krishnakumar and Morf, 1986, also use this qua-

dratic recurrence to compute the eigenvalues of a symmetric tridiagonal matrix

in O(NlogN) time. Their method of separating the zeros is different from the one

presented here.

A fundamental problem in parallel zero finding is to ensure that different proces-

sors compute different zeros. We show that the zeros of the polynomials at any

step in the quadratic recurrence are separated by the zeros of the polynomials at

the previous step. Hence the zeros can be determined by recurrsion beginning

with the single zeros of linear polynomials and ending with the zeros of the

characteristic polynomial. The precise nature of the separation is given in section

3.

There are two other problems associated with the implementation of zero finding

methods for characteristic polynomials, both of which are associated with the use

of finite precision arithmetic. First, even if c_ ¢ 0, the zeros may not be

-4-

separated because of rounding errors. A procedure is presented in section 5 that

permi_ the automatic detection and handling of these cases without a machine

dependent test. Second, for large N and/or I IAI I, the possibility of

over/underflow exists when computing the characteristic polynomial. Usually

this can be handled by an apriori scaling of A but a more reliable approach is

required ifthe algorithm isused in general purpose software.

An acceptable alternative is to use dynamic parallel scaling in which the inter-

mediate computations are maintained at 0(1), (Swarztrauber, 1979). Another

alternative is to reformulate the problem in terms of self-scalingrational func-

tions. Both alternatives are presented in section 5 and their accuracy is com-

pared with the QR algorithm in section 6.

2. A Parallel Algorithm For Evaluating the Characteristic Polynomial.

The characteristic polynomial will be computed in terms of characteristic polyno-

mials di, i of submatrices consisting of rows (and columns) i through j of A.

Expanding about the jth row we obtain the well known three term recurrence

relation

2
did = (b i -)_)di,i_ 1 - ci_ldi,i_ 2. (2.1)

If we define the sequence

ei, i = cjdi,j_ 1 (2.2)

we obtain the two term matrix recurrence

T T

i ill fbi
Lei,j_lJ L--Cj 1]"

(2.3)

To solve this recurrence relation we define

-5-

J [bk-k cA]Q;,+= n . (2.4)
k=il.--Ck_1 0

Next we show that (2.4) has the closed form

[di,j

Qi,j = [
!
L-- Ci_ldi+l, j -- ci_icjdi+l,j_l

(2.5)

with elements that can be determined from the characteristic polynomials of four

submatrices. The desired characteristic polynomial dl, N is given as the upper left

element of Ql,/v" The proof of (2.5) is by induction on j. Equation (2.5) can be

verified by direct computation for j=i+l. If we define di+l, i = di,i_ I = 1 and

di+l,i_ 1 = 0 then equation (2.5) is also true for j= i. Now assume that it is true

for j-l, then

Qi,j

di,j - 1 cj_ 1di,j- 2

Ci-ldi+l,j-1 -- Ci_lCj_ldi+1,j_2

(2.6)

After matrix multiplication, (2.1) can be used with (2.6) to verify (2.5) which

completes the proof.

The associative property of matrix multiplication provides a splitting formula

that is fundamental to the parallel algorithm. For any k

Qi,j = Qi,kQk+Lj" (2.7)

-6-

Consider now the parallel algorithm for computing Q1,/v for the case N = 8.

Step 1 Compute

Q2i- 1,21 -----

b2i_l-k c2i_ 1

-c2i_ 2 0

(2.s)

for i = 1,2,3, and 4.

Step 2 Compute

Q1,4 = Q1,2Q3,4 and Qs,s = Q4,sQ6,T. (2.9)

Step 3 Compute

QI,S ,= Q1,4Qs,s. (2.10)

The computations within each step can be performed simultaneously. For gen-

eral N, the firststep requires 5 multiplications and 2 additions per matrix multi-

plication for a total of 3.5N flops. The rth step requires 12N/2 r flops for

r = 2,...,log2N or about 6N flops. Therefore on a single processor, the computa-

tion of the characteristicpolynomial requires 6.5N flops. With N processors the

firststep requires 4 flops (since 2 processors are available for each matrix multi-

ply), 3 flops are required for the second step and 2 flops are required for each

step thereafter. A minimum of two flops are required since the additions must

follow the multiplications. Hence a total of 21og2N+3 flops are required to

-7-

compute the characteristicpolynomial using N processors. In the sections that

follow we will use the element-wise form of (2.7),which is obtained by substitut-

ing (2.5)into (2.7).

- - _d
dij di,k dk+l,j ck i,k-ldk+2,y. (2.11a)

did_x = di,kdk+td_l- c:di,k_ldk+2d_,. (2.11b)

= _ 2 d (2.11c)di+l,l di+1,kdk+1,l ck di+l,k-1 k+2j.

2

di+l,i_ 1 = di+l,kdk+ij_ 1 - ck di+l,k-xdk+2,i-1. (2.11d)

Equations (2.11b) through (2.11d) are the same as (2.11a) but with a suitable

shift in the subscripts i and j. Nevertheless all four equations are required to

"close" or complete the recurrence relations.

The parallel algorithm developed in this section can be used to solve a general

tridiagonal system of equations (Swarztrauber, 1979). It has also been used

(Krishnakumar and Morf, 1986) as part of a parallel algorithm for computing the

eigenvalues of a symmetric tridiagonal matrix. Their method of separating the

zeros is different from the one given in this paper.

3. The Separation Theorem. The fundamental problem with zero finding on

a multiprocessor is ensuring that different processors compute different zeros. In

this section we will show that if)_t are the collated zeros of the four characteristic

polynomials on the right side of equation (2.11a) then the zeros of did occur one

per interval in every other interval (k2pk_t+l). This result also holds for (2.11b)

-8-

through (2.11d) but it will only be demonstrated for (2.11a) since the proofs are

almost identical. The separation theorem is fundamental to the parallel algorithm

and ensures that each processor will find a different zero. To prove the theorem

and develop the precise nature of the separation we will need the following three

lemmas.

Lemma 1

k k-1
Let p(x) = Po + " "" + Pk x and q(x) = qo + "'" + qk-1 x be polynomials

with real and strictly interlacing zeros. If Pk and qk-1 have the same sign then

r(z) = p(x)/q(x) is monotone increasing on any interval that does not contain a

zero of q(x). If they have the opposite sign then r(x) is monotone decreasing.

More specifically, if pk/qk_l .> 0 then r'(z).> PJqk-r If pk/qk_l _ 0 then

r' (x) _ PJqk-l"

Proof: The partial fraction expansion of r(x) is

Pk Pk - 1qk - 1-- Pk qk - _- k - 1 w I

rCx)- x + + Z (3.3)

, (x - aI)
qk - 1 qk - 1 i= 1

where a t are the zeros of qCx) and w t = p(at)/q' Cat). Therefore

Pk k-I w i

r'(x) - _" (3.4)

qk-1 I=O (x -- at) 2

If Pk and qk-I

sign[q' (a/) l --

are both greater than zero then sign[pCat)] = sign(-1) t-k+l and

sign(-1) t-k and hence w t _ O. This result can be combined with

-9-

(3.4)

to complete the proof of Lemma 1 for this case. The remaining three cases are

handled in a similar fashion.

Lemma 2

2
Let R(x) = rl(x)r2(x) - e where rl(x) - p(i)(x)/q(1)(x) and

r2(z) = p(2)Cz)/q(2)Cx) are like r(x) in Lemma 1. Also let c :f: 0 be real and k I

be the zeros of p0)(x), qO)(x), p(2)(x) and q(2)(z) which are assumed to be real,

distinct, and ordered. Then R (z) can not have a zero in both adjacent intervals

(Xt_l,×_ and (×_X_+_).

Proof: Only one of the polynomials plCx), qlCx), p2Cx) or q2Cx) changes sign at

k I and hence rl(x)r2(x) must be negative on one of the intervals which therefore

does not contain a zero of R (x).

Leinlna 3

Let R(x) be defined as in Lemma 2 where the degrees of rt(x) and r2(x) are l

and m respectively. Also let the high order coefficients in the polynomials satisfy

_ = si , (2). (2) ,sign[pt(_)/qt¢t)_] gntp_ 'q_-_l • Then R(_) does not have morethan one zero
in any interval (k_k/+1).

Proof: From Lemma 1, r'l(z) and r'2(z) have the same sign. If R(_) is zero

then rt(x) and r2(z) also have the same sign. From the chain rule for

differentiation rt(z)r2(z) must be monotone which implies that a is a unique

zero.

- 12 -
PRECEDING PAGE BLANK NOT tqLMED

The four sets of eigenvalues belong to the four characteristic polynomials listed

on the left side of equations (2.11a-d). The eigenvalues of A are computed in the

first of the four steps listed above when r = s and hence the remaining three

sets do not have to be computed. The amount of computation doubles when r

increases by one until r = s when it is halved. Therefore the amount of compu-

tation for the intervals that contain the eigenvalues of A is about four times the

amount that would be required to compute the eigenvalues of A if the intervals

were known.

Let n e be the maximum number of polynomial evaluations that are necessary to

determine a zero. For each r = 1,...,log2N a total of about 4N zeros of charac-

teristic polynomials with degree 2 r must be computed. From section 2, 6.5.2 r

flops are required to evaluate a polynomial on a single processor. Therefore a

total of

logan

TF I = 26hen _, 2 r _ 52heN 2 (4.1)

r--1

flops are required to compute the eigenvalues of a symmetric tridiagonal matrix

on a single processor (using the parallel algorithm for evaluating the polynomials.

With N processors each zero can be determined on a separate processor for a

total flop count of

TF N _ 52n N. (4.2)

With N 2 processors a characteristic polynomial with degree 2 r can be computed

with 2r +3 flops using the algorithm given in section 2. In addition each zero can

be determined on a separate processor so the total number of flops is

logan

2
TEN2 _ 4n e _ (2r+3) _ 4nelog2N. (4.3)

r---I

This is the count for computing the eigenvalues of a symmetric tridiagonal

matrix with N 2 processors. Note that the four polynomials in (2.11a-d) could be
2

evaluated independently with additional processors for a minimum of he log N

flops.

In the development of the operation counts we have, in the traditional way, over-

looked what could be a significant contribution to the total computing time;

13-

namely, the time required for communication. The collation of the zeros of the

four characteristic polynomials in the separation theorem must also be performed

in O(log2N) time or the overall algorithm cannot be considered to be O(log2N).

The collation of di,k, dk+i,i, di,k_l, and dk+2, i can be done in the following

steps.

1. The zeros of di, , and di,k_ I interlace and hence a shuffle can be used to

combine them in an ordered sequence, say k_ 1}.

2. Similarly the The zeros of dk+x, / and dk+2,1 can be shuffled to produce an

ordered sequence, say k__}."

3. Finally the ordered sequences k_ 1} and and k_2) can be merged to form the

desired collated sequence.

For a polynomial of degree 2 r each of these steps can be performed with O(r)

parallel transmissions and hence the overall time for communication with N pro-

cessors is proportional to

log2N

2
r _- log2N (4.4)

r=0

Therefore the overall algorithm including communication is O(log2N) if the

architecture of the multiprocessor supports the algorithmic requirements of the

shuffle and merge. The hypercube and related interconneetion topologies support

both the parallel computation and communication that are implicit in the algo-

rithms presented here.

5. Implementation. In this section we will develop both a polynomial and

rational function implementation of the algorithm. The polynomial implementa-

tion may require scaling to avoid over/underfiow but it is more accurate than the

rational function implementation. We determine the behavior of the functions at

the endpoints of the intervals to eliminate the usual problems associated with

finite precision arithmetic. This also provides both implementations with a high

level of reliability. The computation of near multiple zeros (or multiple zeros if

c i = 0) is facilitated by multiple intervals with zero (or near zero length) that

- 14-

provide the correct multiplicity. The purpose of this section is to provide certain

details of the implementation that are necessary before the algorithm can be con-

sidered of practical use.

A. Polynomial Implementation.

In this implementation the polynomials are computed using the parallel algo-

rithm that was given in section 2. We do not discuss the zero finding method

itself other than to note that the method of bisection was used for the results

presented in section 6. A considerable amount of literature is available on this

topic and many options exist.

The reliability of the algorithm is greatly enhanced by knowing the signs of the

characteristic polynomials at the endpoints of the intervals. Because the eigen-

value enters the polynomial with a negative sign, i.e. as bi-k on the diagonal of

A, the high order term in di, i is (-1)Y-_+lz i-i+I . But j-i+l=2 r is an even

integer which combined with the separation theorem, implies that the signs of

di, i on the intervals _i:k:j) for /=0,...,2r+I- 1 are

+ + + " " " + + +. Similarly the signs of di,/_ 1 on k_(i:k:j-1) for

1=0,...,2r+1-3 are + + + "'' + +-. The signs of di+1, / on

k/(i+l:k:j) for 1=0,...,2r+1-3 are + + + ...

of di+l,/_ 1 on kl(i+ l:k:j-1) for

+ ÷+...++ +.

+ + - and the signs

1=0,...,2r+1-5 are

In practice there are two reasons why these sign patterns can be interrupted.

First, as previously noted, di, k and dk+_, i are characteristic polynomials of

different submatrices and may therefore share a common zero that would also be

a zero of di, i. Then, with finite precision, a small value could be obtained for

di, i with the wrong sign. Second, although in theory the zeros of di, k and d,k_ I

(or dk+l, i and dk+2,i) interlace, with finite precision they may coalesce or cross

and again produce a small number with the opposite sign. Both cases occur

when a zero of the characteristic polynomial has already been found to machine

precision and it would therefore seem reasonable to select one or the other as a

zero. However, endpoint zeros might belong to a different interval in the presence

of near multiple or multiple zeros. The most satisfactory approach is to replace

any small end point value, whose sign differs from the correct sign, by the

machine epsilon divided by, say 10, with the correct sign. The bisection method

or variants thereof can then be used to select the zero. This procedure is

i

15-

fundamental to the reliability of the algorithm and guarantees that N zeros will

be found. Note that these tests do not require a machine dependent test, i.e. only

sign tests are required.

In practice, some of the intervals usually shrink to zero as the computation

proceeds. This is beneficial because it reduces the amount of computation that is

required to compute the zeros. This "deflation w is similar to that reported by

Dongarra and Sorenson, 1987, who observed that it could make their method

competitive with the QR algorithm on a single processor. However there are

important cases where deflation does not occur, e.g., the tridiagonal matrix with

b; = -2 and c i = 1. For cases where deflation occurs it is likely that the length

of the intervals is about machine precision and not identically zero. This could be

detected using a machine dependent test; however, a more satisfactory approach

has been to detect interlace faults and set the zeros that have crossed to their

average value. This creates an environment where the length of many intervals is

identically zero and detectable without the use of a machine dependent test.

For large N or l iAil the characteristic polynomial may over/under flow the

arithmetic unit. This can be avoided by scaling the intermediate 2×2 matrices

that occur during the parallel algorithm, (Swarztrauber, 1979). Scaling is not

required at each level r so the time required for scaling can be kept to a

minimum. For example, if scaling is performed for r=5,10,15,.., about N/32

matrices are scaled. If npower of two" scaling is used then accuracy is unchanged

and the time is negligible, particularly if it is done in machine language. Scaling

can also be eliminated by a reformulation in terms of rational functions.

B_ l_a_ional Function Implementation.

T_i:.e" _re three reasons to consider a second implementation of the algorithm.

First, .the rational function is self-scaling; second, one can take further advantage

of deflation to reduce the order of the rational functions; and third, the operation

count for the rational function implementation is somewhat less than the polyno-

mial implementation. This must be weighed against a loss of accuracy compared

with the polynomial implementation. The loss is not substantial since only two

binary bits are lost when compared with the QR algorithm for a matrix with

order 1024. Accuracy tables are provided in section 6.

The eigenvalues of A. are computed as the zeros of the rational function R(z)

that was introduced in Lemma 2, section 3, namely

R(x) = rl(=)r2(=)- c: (5.1)

where rl(:g) = di,k/di,k_ 1 and r2(:r,) = dk+l,]/dk+2,]. All polynomials are

evaluated and stored in factored form. Like the polynomial implementation, it

is necessary, from a practical point of view, to know the behavior of R (z) at the

end points of the interval [_1,c_2] under consideration. If a zero of (5.1) exists

then rl(z) and r2(x) must have the same sign. They also satisfy the conditions of

Lemma 1 which ensure that they are both monotone decreasing functions. Since

the ratio of the high order coefficients is -1 for both rl(x) and r2(x). These con-

ditions are satisfied only if d/, k or dk+l, i are zero at one end of the interval and

di,k_ 1 or dk+2, i are zero at the other which implies that only two cases are possi-

ble, namely the ones listed in steps 4. and 5. below. Consider now the steps that

must be taken to ensure a reliable implementation.

1. Like the polynomial implementation, any interlace faults are corrected by

replacing the zeros that have crossed by their average value.

2. Any zeros that are identically common to both the numerator and denomi-

nator of rl(x)r2(x) are removed and selected as zeros of di, i. This deflation

can substantially reduce the amount of computation. A matrix with order

N=4096 is presented in section 6 for which the maximum order of any com-

puted polynomial is 24!

3. If _1 = c_2 then a 1 is selected as a zero of di, i. This deflation step can be

used with both implementations.

2

4. If cz1 ¢ a 2 and either di, _ or dk+l, i are zero at _I then R(cxl) is set to -c A

and R (c_2) is set to a large positive number.

5. If c_1 ¢ cx2 and either d/,k_ 1 or dk+2, i are zero at _1 then R(c_l) is set to a

large positive number and R (_2) is set to -c:.

Case 4. applies to the first interval and case 5. applies to the last interval but

with minor modifications. Machine independent tests can be used to determine

which of the cases 1.-5. apply. Once the values of R(x) are established using

step 4. or 5. the zeros can be determined using bisection or any variant thereof.

Note that this does not preclude the use of another method such as the one used

by Dongarra and Sorenson, 1987, if it is combined with bisection.

Although scaling is not required for this implementation, the rational functions

rl(z) and r2(z) should be computed as a product of' quotients (z-ki)/(z-Gi)

where ki and [3i are chosen as close as possible. This prohibits the growth of

intermediate computations that might result in over/underflow.

6. Computational results. The accuracy of implementations A and B are

compared with the QR algorithm as implemented in subroutine TQL1 in

EISPACK (Smith, et.al.,1976) for symmetric tridiagonal matrices. The entries in

@

max l k i-k i I
i

= (6.1)
¢

max l Xi I
i

#

where k i is computed in single precision and k i is computed using a double pre-

cision version of subroutine TQL1. All the computations were done on the

CRAY-2 computer located at NASA Ames Research Center.

Three tables are presented that correspond to three different matrices. Table 1

contains a comparison of accuracy for a matrix with random coefficients. The

+ (Wil-matrix corresponding to Table 2 is W2k which is a slight variant of W +2k-1

kinson, 1965, p.308). The variant is used because the parallel algorithms were

implemented for matrices with order equal to a power of 2. Although this restric-

tion can be removed it nevertheless simplifies implementation. W +2k is of interest

because it tests the ability of a method to handle near multiple eigenvalues.

Table three corresponds to the matrix with zeros on the diagonal and ones adja-

cent to the diagonal. The following observations can be made from the tables.

1. The accuracy of the polynomial implementation is always superior to the

accuracy of the QR algorithm. This result can be established by comparing

the second and third columns in Tables 1,2 and 3.

2. The accuracy of rational function implementation is also superior to the QR

algorithm for matrices with random elements or the matrices W +zk' These

results can be established by comparing columns two and four in Tables 1

and 2.

3. The accuracy of the QR algorithm is superior to the accuracy of the rational

function implementation for the matrix with zeros on the diagonal and ls in

the sub and super diagonals. This result can be established by comparing

columns two and four in Table 3. The difference is not substantial, for

the tables below are computed from

-- j.Q) -

N -- 1024 they differin only the lasttwo bits

- lY-

Table 1

Accuracy of the QR method and two implementations

of the parallelalgorithm for a symmetric

tridiagonal matrix with random coefficients

N

128

256

512

1024

2048

4096

QR

5.67× 10 -13

1.25x 10-12

1.82x 10-12

3.42x 10-12

PI

2.06x 10-14

3.95x 10-14

3.94x 10 -14

4.60x 10-14

RI

3.95x 10-13

2.57x 10 -13

7.79 x 10-13

7.79x 10-13

7.33x 10 -12

1.32x 10 -11

6.94x 10-13

7.00X 10-13

1.61x 10-12

2.14X I0-12

QR as implemented in subroutine TQL1 from EISPACK

PI is the polynomial implementation

RI is the rational function implementation

- _U-

Table 2

Accuracy of the QR method and two implementations

of the parallel algorithm for a symmetric

tridiagonal matrix W +2k with near multiple eigenvalues

N

128

256

512

1024

2048

4096

QR

2.63×10 -13

6.36 x 10-13

1.28× 10 -12

2.55x 10 -12

5.31x 10 -12

9.88X 10 -12

PI

2.81X 10-14

3.53x 10 -14

4.25× i0-14

4.97x 10 -14

-14
5.68x 10

-14
6.39 x 10

RI

1.05x I0-14

1.06x I0-14

1.42x 10 -14

1.06x I0-14

1.07 x i0-14

1.42× 10 -14

QR as implemented in subroutine TQL1 from EISPACK

PI is the polynomial implementation

RI is the rational function implementation

- 21-

Table 3

Accuracy of the QR method and two implementations

of the parallel algorithm for a symmetric

tridiagonal matrix with zero diagonal and l's off diagonal

N

128

256

512

1024

2048

4096

QR

4.37x 10 -is

7.35x 10 -13

1.44X 10-12

2.73X 10 -12

5.42 × I0-12

1.01× 10 -11

PI

5.33x 10 -14

6.75x 10-14

1.46x 10 -13

2.06x 10-13

3.45x i0-Is

6:25x 10 -Is

RI

1.53 x i0- IS

6.64x i0 -Is

2.38x 10 -12

1.04x 10 -li

2.78x 10 -11

2.24 x i0-1o

QR as implemented in subroutine TQL1 from EISPACK

PI is the polynomial implementation

RI is the rational function implementation

The accuracy of the rational function implementation in Table 3 is somewhat less

than in Tables 1 and 2, probably because deflation does not occur in Table 3.

Deflation occurred for all the parallel computations in Tables 1 and 2 and

appears to be the rule rather than the exception. For N = 4096 the eigenvalues
+

of the matrix W2k are given as the zeros of a polynomial of degree 4096; however

because of deflation, the maximum degree of any computed rational polynomial

is 24! Similarly, the maximum degree of any computed rational polynomial for

Table 1 is 75. The eigenvalues of the matrix in Table 3 are k i = 2cosi_r/(N+ 1)

which are separated to the extent that deflation is minimal. Since the

- _,A-

submatrices are identical some deflation does occur but the maximum degree is
+

4096 compared to 24 for the matrix W2k presented in Table 2. This difference in

computation may explain the difference between the fourth column of Table 3

and the fourth column in Tables 1 and 2.

The results in Table 2 show that near multiple zeros do not present any

difficulties for the parallel method. Indeed the amount of computation may be

reduced. Recall that the method produces exactly N intervals that contain one

and only one zero and therefore, in the presence of near multiple zeros, the inter-

val length can be near or identically zero. Therefore a zero can be obtained

directly and with the proper multiplicity without using any zero finding methods.

For intervals with near zero length the usual concern about slow convergence of

Newton like methods for multiple zeros is not warranted because: first, the zeros

are distinct to machine precision and second, any point on the interval provides a

good initial approximation to the zero.

Since the interval end points are themselves zeros of characteristic polynomials it

is reasonable to ask if they are subject to the usual concerns about near multiple

zeros, i.e. has the problem simply been deferred to the interval endpoints? The

answer is that they too may be found on adjacent short intervals or on a juxta-

position of intervals with near zero length. This line of reasoning continues recur-

sively to the first level where linear polynomials provide the interval endpoints

for quadratic polynomials. Since near multiple zeros are clearly not a problem at

this level, by induction they are not a problem at any level.

The performance of the algorithm on a parallel computer is a complex issue that

depends on many factors including:

a) Many methods could be used to determine the zeros within each interval

including Newtons method, bisection, and the secant method together with

variants and combinations. Zero finding is itself a significant area of compu-

tational mathematics. Dongarra and Sorenson, 1987, use a variant of New-

tons method in which a local quadratic rational approximation to the func-

tion is computed. The zero-in method (Lo, Philippe, and Sameh, 1987) com-

bines bisection and the secant method.

b) Deflation plays a significant role in reducing computing time on either a sin-

gle or multiprocessor. The effects are two-fold: first, the number of com-

puted zeros is reduced and second, the order of the rational functions is

decreased. With deflation the computing time on a single processor for the

c)

d)

rational function implementation was proportional to N rather than N 2.

Dongarra and Sorenson, 1987, report performance superior to QR algorithm

in the presence of deflation even on a single processor. However, as evi-

denced by Table 3, deflation does not always occur which verifies that a

matrix with random eoefllcients does not provide a stringent test because it

probably does not correspond to either the worst or the best case.

The algorithm requires global communication and will therefore perform

better on parallel computers that provide efficient global parallel pathways

such as those provided by the hypercube and related interconnection topolo-

gies.

The algorithm requires the implementation of the shuffle and merge com-

munication tasks. To maintain an overall complexity of O(log2N) these

tasks must be implemented with parallel communication algorithms on suit-

able multiprocessor architectures. Although communication does not change

the overall complexity it is likely to make a significant contribution to the

overall computing time.

7. Summary and conclusions. A parallel algorithm has been presented for

computing the eigenvalues of a symmetric tridiagonal matrix in 0(log2N) time

using N 2 processors or O(N) time using N processors. Attributes of the method

that contribute to reliability and performance are: i) a separation theorem that

ensures that different processors find different eigenvalues, ii) implementations

that eliminate the usual problems associated with finite precision arithmetic, iii)

reliable treatment of multiple and near multiple zeros, and iv) high accuracy.

Two implementations of the algorithm were presented. The polynomial imple-

mentation is more accurate than the QR and the rational function implementa-

tion has comparable accuracy with deflation but is less accurate in the absence of

deflation. Nevertheless it remains of interest because it is self scaling and takes

full advantage of deflation both from the standpoint of having to compute fewer

zeros of rational functions with lower degree.

ACKNOWLEDGEMENT

The author wishes to acknowledge a helpful conversation with William Gragg

who pointed out the partial fraction expansion for computing the derivative of a
rational function.

REFERENCES

J.R. Bunch, C.P. Nielsen, and D.C. Sorensen, 1978, Rank-one modification of the

symmetric eigenproblem, Numer. Math., vol. 31, pp. 31-48.

J.J.M. Cuppen, 1981, A divide and conquer method for the symmetric tridiagonal

eigenproblem, Numer. Math., vol. 36, pp. 177-195.

J.J. Dongarra and D.C. Sorenson, 1987, A fully parallel algorithm for the sym-

metric eigenvalue problem, SIAM J. Sci. Star. Comput., vol. 8, pp. s139-s154.

I.C.F. Ipsen and E.R. Jessup, Solving the symmetric tridiagonal eigenvalue prob-

lem on the hypercube, SIAM J. Sci. Star. Comput., to appear.

A.S. Krishnakumar and M. Morf, 1986, Eigenvalues of a symmetric tridiagonal

matrix: a divide and conquer approach, Numer. Math., vol. 48, pp. 349-368.

S.-S. Lo, B. Philippe and A. Samed, 1987, A multiprocessor algorithm for the

symmetric tridlagonal eigenvalue problem, SIAM J. Sci. Star. Comput., vol. 8,

pp. s155-s165.

B.T. Smith, J.M. Boyle, J.J. Dongarra, B.S. Garbow, Y. Ikebe, V.C. Klema, and

C.B. Moler, 1976, Matrix Eigensystem Routines - EISPACK Guide, 2nd edition,

Lecture Notes in Computer Science, no. 6, Springer-Verlag, New York.

P.N. Swarztrauber, 1974, A direct method for the discrete solution of separable

elliptic equations, SIAM J. Numer. Anal., vol. 11, pp. 1136-1150.

P.N. Swarztrauber, 1979 A parallel algorithm for solving general tridiagonal

equations, Math. Comp., vol. 33, pp. 185-199.

J.H. Wilkinson, The Algebraic Eigenvalue Problem, Clarendon Press, Oxford,

1965.

